在调试或维修线性直流电源电路时,我们经常说“ **烧毁”。 **可以是电阻,保险丝或芯片。很少有人会探究这个词的用法。为什么用“烧了”代替“坏”?原因是在线性直流电源产品中,热故障是最常见的故障模式,它转换为电流过载,局部空间中的短期大电流。有了热量,不容易消散热量,局部温度急剧上升。同样,如果温度过高,导电铜皮,电线和设备本身也会烧坏。因此,大多数电气故障是热故障。
其次,如果假定电流过载严重,但组件的散热良好,并且可以将温升控制在很低的范围内,那么设备会发生故障吗?答案是肯定的。
如果要提高线性直流电源产品的可靠性,另一方面,可以提高设备和组件的耐高温特性,并承受更大的热应力(环境温度或过载等)。它增强了散热能力,散发了环境温度和过载带来的所有热量,并提高了产品可靠性。下面介绍传统的热设计方法。
我们的线性直流电源中常用的是散热器和风扇散热方法。散热程度可能不足,或者散热可能过多。最佳吗?它可以基于热流。密度用于评估,热流密度=热量/热通道面积。
根据《GJB/Z27-92 线性直流电源设备可靠性热设计手册》(参见图1),根据可接受的温升要求和计算出的热通量密度,可以获得可接受的散热方法。例如,温度上升为40°C(垂直轴),热通量密度为0.04 W/cm2(水平轴)。找到如下所示的交点,然后进入自然冷却区,自然对流和辐射可以满足设计要求。
大多数散热设计都适用于上表,因为散热基本上是由于表面散热造成的。但是,对于密封设备,必须使用体积功率密度来估算热功率密度=热/体积。下图(图2)显示了当温度升高要求不超过40°C时,不同体积功率密度的散热模式。例如,功率调节芯片的热量消耗为0.01W,体积为0.125cm3,体积功率密度为0.1 / 0.125 = 0.08W / cm3。如果您看下图,您会发现金属传导冷却符合要求。
根据上图,冷却方式的选择顺序为自然冷却-热传导强制空气冷却-液体冷却-蒸发冷却。通过传导,辐射,自然对流等冷却方式,体积功率密度小于0.122W/cm3,强制风冷为0.122-0.43W/cm3,液冷为0.43-0.6W/cm3,0.6W/cm3,超过了蒸发冷却。当需要40°C时,这是推荐的标准值。如果温度低于40°C,则需要降低散热方法。如果温度升高为0.122,则需要强制风冷,如果温度升高非常低,请选择液体冷却或蒸发冷却。
一些问题需要注意。是否有强制风冷以满足散热要求?您可以自由选择风扇的速度。有些工作就像在说您可以处理大学的知识水平。风扇速度与气流速率直接相关。这是一个新概念,即热阻。
热阻=温差/热量消耗(单位:°C/W)
热阻越小,热导率越高。这个概念对应于抵抗。两端之间的温差类似于电压,并且热传导类似于电流。空气导管的热阻包括流体力学计算。如果热设计要求不高,则可以通过估算或实验来获得。如果要求非常严格,请参见“ GJB / Z27”。 -92线性直流电源的可靠性热设计手册包含系数和假设的许多组合。一言以蔽之。我不知道如何将各个系数与实际的风管设计结合起来。例如,风管内有许多电缆,风管壁不均匀。金属板是带有不均匀皮带装置的线性直流电源电路板。有些系数只能估算。相反,它是最准确的实验测量方法。
选择散热器时,热阻更大,大多数制造商可以提供此参数。例如,芯片的功耗为20W,芯片表面不能超过85°C,最高环境温度为55°C。计算所需的散热器热阻R。
计算:散热器和芯片之间的实际热阻约为0.1°C/W,则(R + 0.1)=(85-55)°C/20W,则R = 1.4°C/W。根据该值选择散热器。
请注意这里的问题。该计算默认为热量消耗≈芯片功率。对于典型的芯片,该芯片没有驱动机制,也没有其他能量转换机会,因此可以通过这种方式进行估算。受热。电源转换芯片和模块不是这种情况。例如,电源是能量输出。输入功率的一部分转换为热量,大部分转换为电能输出。此时,它不被视为热量。消耗≈功率。
以上是定量设计的内容。在定量设计指南之后,还有一些特定的工程技能可以帮助您达到理论计算结果的要求,共有三种常见的热设计思想:降耗、导热、布局。